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Abstract 
 

A new method has been developed for resampling raster image data 
that contain class or categorical data.  Categorical data are usually the 
result of an image classification or other statistical processes.  During 
reprojection and resampling, the combination or interpolation of data with 
their neighboring pixels is not necessarily meaningful as it is with signal-
based remote sensing data.  The nearest neighbor resampling method is 
commonly used to resample this type of data.  This method is chosen 
because the alternatives--cubic convolution, bilinear interpolation, etc. -- 
are interpolating methods that do not preserve categorical values.  In 
addition, the geometric distortions that are present in the projection 
change of data of global extent are far greater than distortions that occur 
in moderate- to high-resolution remote sensing data.  Indeed, many of 
the software tools available today were designed for single-scene, 
signal-based remote sensing image data where the extent of the image 
is usually only a few hundred kilometers, rather than for datasets of 
global or continental coverage.  The typical nearest neighbor resampling 
algorithm for categorical data takes into account only the center of the 
pixel and not the area covered by the pixel.  In instances where the 
image (or a region of the image) is being undersampled, nearest 
neighbor resampling can result in imagery that is not representative of 
the original image.  The new resampling method treats pixels not as 
points, but as areas.  This approach maps the corner coordinates of the 
output image pixel back into the input image and statistically determines 
the pixel value on the basis of input image pixels that lie within the output 
pixel's geometric extent. 

 
 

                                            
1 USGS EROS Data Center, SAIC, Sioux Falls, SD  57198-0001.  Work performed under U.S. Geological 
Survey contract 03CRCN0001. 



2  2/3/2003 

Introduction 
 
In recent years, advances in remote sensing technologies and computer storage and 
processing power have enabled the construction of many datasets containing raster 
image data of global or continental extent.  These datasets are typically combinations of 
several data acquisitions and are often processed beyond the raw image sensor data.  A 
common data representation is the composite pixel (Eidenshink and Faundeen, 1994) that 
is a representative value of a particular ground location over a period of time.  Also 
present are classification images or images produced with other statistical processes.  
The pixels in these types of data are no longer signal-based data but are statistically 
binned into classes or categories.  These data are often referred to as “class” or 
“categorical” data; each pixel is assigned a value to represent a given class for the portion 
of the Earth that it covers.  A common example of this is land cover classification data, as 
contained in the Global Land Cover Characterization Database developed by the U.S. 
Geological Survey's Earth Resources Observation System Data Center and others 
(Loveland, et al., 1999). 
 
The construction of these categorical global datasets is often a very large task.  As 
computational power and computer storage technologies advance, so do the requirements 
of the scientific community; the size of these datasets and the amount of processing 
incurred to create them are enormous (Eidenshink et al, 1994, Steinwand, 1994).  In 
addition, because these datasets are often combinations of many different acquisition 
dates, the choice of a single projection is necessary for production purposes and is often 
chosen on the basis of processing and storage considerations rather than the eventual 
use of the data.  As a result, data are often offered in one projection, and a single 
projection rarely fills the needs of all end users. 
 
End users of these data often find it necessary to reproject the data over a given study 
area so that they can be combined with data from other sensors and studies.  Very often, 
those studying the Earth at a global scale will require a different projection when studying 
a single continent.  Therefore reprojection, and thus, resampling, are necessary. 
 

The Problem With Reprojection and Resampling 
 
Reprojection and resampling categorical raster image data of global or continental extent 
should be approached with caution.  Users of these data are often presented with the 
following situation:  They need to present or perform their study in a given projection over 
a given study area.  Often the data needed to perform this study exist in a different 
projection and pixel size.  Most modern image processing or geographic information 
system software will perform these transformations, but the issues of geometric distortion 
and the errors due to resampling need to be considered carefully. 
 
The errors due to geometric distortion that occur during a projection change of raster 
image data have recently been documented (Steinwand, et al., 1995, Mulcahy, 2000, 
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Mulcahy and Clarke, 2001, Usery and Seong, 2001).  The errors due to resampling in 
areas of large geometric distortion or scale change caused by a change in projection have 
not yet been adequately addressed. 
 
The nearest neighbor resampling algorithm computed by means of the inverse mapping 
process takes one point in the output space pixel (usually the pixel center as presented 
here, but some systems standardize on one of the pixel corners) and maps that point into 
the input image space (Figure 1).  This transformation usually consists of a linear 
transformation from the output space line and sample coordinate to the rectangular 
projection coordinate of the output space projection.  This coordinate is then reprojected 
into the projection system of the input image space.  Another linear transformation is then 
applied to get to the input space line and sample coordinate.  This resulting input space 
image coordinate is usually not at an exact pixel location, so it is rounded to the nearest 
pixel position, and that pixel's value is assigned to the output image at the output image 
coordinate under study.  Although this method is computationally efficient, it can result in 
imagery that is not representative of the original data. 
 
 

      

Figure 1.  Nearest neighbor mapping of 1 pixel. 
 
 
When the output imagery is constructed so that the resolution of the image is reduced, or 
when the projection change transformation causes this situation to occur, the next pixel in 
the output image, again mapped with the same algorithm, falls more than 1 pixel away in 
the input image (Figure 2).  From a signal theory point of view, the input imagery in this 
case is undersampled. 
 
 



4  2/3/2003 

        
 

Figure 2.  Nearest neighbor mapping of adjacent pixels. 
 

 
Under these conditions, not all data in the input space image are used in the output 
image.  More importantly, the nearest neighbor resampling algorithm does not necessarily 
choose a pixel that is representative of the area being resampled; it just takes the nearest 
one.  This can result in parts of an image dataset not being representative of the input 
image area if, for example, a minority class happened to be the nearest pixel.  Another 
way to think of this (in the scale of Figure 2) is to state that we have 1-km pixels spaced 4-
km apart in the output image instead of a pixel that truly represents the area of the 4-km 
pixel.  
 

The New Algorithm 
 
The new resampling algorithm treats pixels not as points, but as areas.  The four corners 
of each pixel (instead of just the center) are mapped into the input space.  As shown in 
Figure 3, the corners (a, b, c, and d) of the output pixel at sample 3, line 2, map to input 
locations A, B, C, and D.  From this, we see that 23 pixels (some of them partially—see 
below) make up the data that could be considered for the output pixel.  The new algorithm 
uses the coordinates at points A, B, C, and D and creates a polygon.  Any pixel that has 
its center point within the polygon is considered to be inside the area and is included in the 
statistical resampling. 
 
Once the input image pixels that fall under the output image pixel footprint are determined, 
simple statistical methods, such as the maximum occurring pixel, the minimum, the 
average, etc., can be applied to determine the output image pixel value that is to be 
assigned to the output image.  More complex methods could also be used (at the cost of 
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runtime performance) that favor certain classes or that combine classes into composite 
classes. 
 

            
 

Figure 3.  Mapping the input pixel’s footprint—the concept behind the new algorithm. 
 
 

An Example 
 
The following example illustrates how the algorithm works for a 3-pixel by 2-line output 
area for the case where the output imagery has been projected to the Mollweide projection 
with a 4-km pixel size.  The original imagery is in the Plate Carrèe projection (geographic 
coordinates) with an approximate pixel size of 1-km.  Because the original imagery is 
nearly 1 Gb, this type of subsampling (four-to-one) is not uncommon and illustrates the 
need for the new resampling method. 
 
The algorithm follows the method of inverse mapping defined above.  For each pixel, five 
coordinates are mapped:  The pixel's center is mapped to determine the nearest neighbor 
mapping coordinate (this can be omitted in a production algorithm), and each of the output 
pixel's four corners are also mapped to the input image space.  Note that these resulting 
input image coordinates are often not integer locations, and as such they do not map to 
exact pixel locations; they fall between pixels.  Figure 4 shows a part of the Global 
Landcover Characteristics Image over south Florida in Plate Carrée, and Figure 5 shows 
the results of the resampling and reprojection process (5a with nearest neighbor and 5b 
with the new method).  Figure 6 shows a magnification of a small area near the center of 
Figure 5, an area just to the east of Tampa, Fla.  Figure 6a shows the results of nearest 
neighbor resampling, and Figure 6b shows the results of the new algorithm.  The 
remainder of this example focuses on the 3- by 2-pixel region (circled) and the differences 
in results between the two methods.   
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Figure 4.  A part of the input image. 
 

Figure 7 shows the part of the input image that corresponds to the circled area in Figure 6; 
it has been enlarged to show the footprint of the individual output space pixels that go into 
making the output image.  (Note that the area labeled a has the same geometry as used 
in Figures 1 - 3.)  The nearest neighbor (center pixel of each area) is marked with a solid 
black dot.  This is the pixel that is assigned to the output image when the nearest neighbor 
resampling method is used.  The four corners of the output image pixel are also drawn, 
with lines connecting them to show the footprint of the output pixel in the input image 
space. 
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  (a)      (b) 

 
Figure 5.  Results of reprojection to Mollweide at 4-km pixels.  Nearest neighbor results are on the 

left (a); and results of the new algorithm are on the right (b). 
 
 

 
   (a)      (b) 
 

Figure 6.  Enlargement of the center part of Figure 5, with the study area circled. 
 
 
When nearest neighbor resampling is applied, pixels a, c, and e are assigned the Dryland 
Cropland & Pasture class, pixels b and d are assigned the Grassland class, and pixel f is 
assigned the Cropland/Woodland Mosaic class.  When the new algorithm is applied using 
the maximum occurring pixel method, pixels a, b, c, d, e, and f are all assigned the 
Dryland Cropland & Pasture class--the class that occurs the most often in each of the 
pixel areas shown.  A closer look at the pixels with results that differ between the two 
methods, pixels b, d, and f, follows.   
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Figure 7.  Enlargement of input area showing individual output pixel footprints.  The brown 
pixels represent the Dryland Cropland & Pasture class, green the Cropland/Woodland Mosaic 
class, yellow-tan the Grassland class, blue the Wooded Wetland class, and dark-tan the 
Cropland/Grassland Mosaic class. 

 
 
In pixel b, the nearest neighbor pixel is the Grassland class--represented by only two 
pixels of the 20 (10%) that go into the area that makes up output pixel b.  Four pixels of 
the 20 (20%) represent the Cropland/Woodland Mosaic class, and the remaining 14 pixels 
(70%) represent the Dryland Cropland & Pasture class, which was chosen by the new 
algorithm.  A similar situation occurs with pixel d. 
 
In pixel f, the maximum occurring class is the Dryland Cropland & Pasture class, with 11 
of 20 pixels (55%) belonging to that class.  The Cropland/Woodland Mosaic class, which 
is also the class chosen by the nearest neighbor methods, has 7 of the 20 (35%), and the 
Grassland class has 2 of 20 (10%).  In this situation, it may be more correct to produce 
some sort of combination of the two dominant classes, but the added complexity could 
increase runtime and make the interpretation of results more complex. 
 
When the geometric characteristics of the projection change map to a single pixel, or, in 
the case of an enlargement, to a fraction of a pixel, the algorithm reverts back to the 
nearest neighbor method of resampling. 
 

Visual Results 
 
Visually, the results of processing with the new algorithm are most apparent during 
extreme downsampling and reprojection conditions.  This is common for publishing 
pictures in reports and on the Web.  The two images below illustrate the output of the 
algorithm.  Figure 8 was processed using the nearest neighbor resampling method and 
appears noisy.  Figure 9 was processed with the maximum occurring pixel method and 
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appears smoother.  Both figures 8 and 9 incorporate a reprojection to Mollweide and a 
downsampling to 50-km pixels from the original 1-km data. 
 
 

 
 

Figure 8.  Extreme downsampling and reprojection with nearest neighbor. 
 
 

           
 

Figure 9.  Extreme downsampling and reprojection with the new algorithm. 
 

Conclusion 
 
A new resampling method has been presented that takes into account pixel areas instead 
of merely a point within a given pixel.  The algorithm maps the footprint of the output pixel 
back into the input image and takes into consideration all pixels under that footprint, rather 
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than just the nearest neighbor.  The current algorithm includes the following statistical 
resampling methods:  The maximum occurring pixel, the minimum occurring pixel, and the 
nearest neighbor.  There is also an option to include a most preferred class and to exclude 
a least preferred class with both the minimum and maximum methods.  Other statistical 
methods, perhaps those that take into account spatial patterns, combination classes, or 
class distribution, could be implemented within the existing algorithm framework. 
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